Rangkuman
IDENTITAS TRIGONOMETRI PENJUMLAHAN DAN SELISIH DUA SUDUT
Perkalian Sinus dan Kosinus
Sebelumnya bacalah terlebih dahulu mengenai Trigonometri untuk mempelajari rumus-rumus jumlah dan selisih dua sudut, yaitu:
cos (α + β) = cos α cos β – sin α sin β
cos (α – β) = cos α cos β + sin α sin β
sin (α + β) = sin α cos β + cos α sin β
sin (α – β) = sin α cos β – cos α sin β
Sekarang, Anda akan mempelajari perkalian sinus dan kosinus. Untuk itu, pelajari uraian berikut.
cos (α + β) = cos α cos β – sin α sin β .... (1)
cos (α – β) = cos α cos β + sin α sin β .... (2)
Dengan menjumlahkan (1) dan (2), Anda akan memperoleh
cos (α + β) + cos (α – β) = 2 cos α cos β
Rumus Jumlah dan Selisih Dua Sudut Sin, Cos, dan Tan
Fungsi dari Rumus Jumlah dan Selisih Dua Sudut Sinus, Cosinus, dan Tangen digunakan untuk menentukan niali sudut yang tidak ada dalam sudut istimewa.
Ada dua cara yang digunakan untuk memudahkan kita mengingat nilai dari sudut istimewa. Cara pertama adalah menggunakan grafik fungsi sinus atau grafik gungsi cosinus. Cara kedua adalah mengggunakan rumus identitas trigonometri.
Rumus Jumlah dan Selisih Sudut Cosinus
Rumus Jumlah Sudut Cosinus
Dengan mengingat kembali tentang koordinat Cartesius, maka:
a. koordinat titik A (1, 0)
b. koordinat titik B (cos A, sin A)
c. koordinat titik C {cos (A + B), sin (A + B)}
d. koordinat titik D {cos (–B), sin (–B)} atau (cos B, –sin B)
AC = BD maka AC2 + DB2
{cos (A + B) – 1}2 + {sin (A + B) – 0}2 = {cos B – cos A}2 + {–sin B – sin A}2
cos2 (A + B) – 2 cos (A + B) + 1 + sin2 (A + B) = cos2 B – 2 cos B cos A + cos2 A +
sin2 B + 2 sin B sin A + sin2 A
2 – 2 cos (A + B) = 2 – 2 cos A cos B + 2 sin A sin B
2 cos (A + B) = 2 (cos A cos B – sin A sin B)
cos (A + B) = cos A cos B – sin A sin B
Persamaan trigononetri
Persamaan trigonometri adalah persamaan yang mengandung perbandingan antara sudut trigonometri dalam bentuk x. Penyelesaian persamaan ini dengan cara mencari seluruh nilai sudut-sudut x, sehingga persamaan tersebut bernilai benar untuk daerah asal tertentu.
Penyelesaian persamaan trigonometri dalam bentuk derajat yang berada pada rentang sampai dengan atau dalam bentuk radian yang berada pada rentang 0 sampai dengan 2π.
SOAL
Nilai x di antara 0° dan 360° yang memenuhi persamaan √3 cos x + sin x = √2 adalah...
Jawaban
√3 cos x + sin x = √2
1/2√3 cos x + 1/2 sin x = 1/2 √2
cos 30° cos x + sin 30° sin x = cos 45°
cos (x-30°) = cos 45', maka
(x-30°) = ± 45° + k . 360°
x1 -30° = 45° + k . 360° atau
x1 = 75° + k . 360°
Komentar
Posting Komentar